
c h a p t e r  12
Understanding and interpreting 
regression with two x’s

453

S
N
L

453

12.0 What We Need to Know When We Finish This Chapter  453

12.1 Introduction  456

12.2 The Variances of b1 and b2  456

12.3 The Interaction between x1i and x2i  463

12.4 Estimated Standard Deviations  468

12.5 Unrestricted and Restricted Regressions  470

12.6 Joint Hypothesis Tests  475

12.7 Wait! What If It’s All a Mistake?  484

12.8 What Happens to Chapters 8, 9, and 10 Now?  486

12.9 Conclusion  491

 Exercises  492

12.0 What We Need to Know When We Finish This Chapter

The slopes that we obtain when we minimize the sum of squared errors for the 
regression of equation (11.12) are best linear unbiased (BLU) estimates of the 
population coefficients. If the population relationship includes two explana
tory variables, the precision of these slopes depends heavily on the extent 
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to which the two explanatory variables are related. Including an irrelevant 
 variable is inefficient, but does not create bias. Everything that we have done 
in chapters 8 through 10 holds with two explanatory variables, either exactly 
or with minor, sensible extensions. Here are the essentials.

1. Section 12.3: If x1i and x2i are highly correlated, it’s often called 
multicollinearity. If we omit either, we bias the estimated effect of 
the other. If we include both, their estimated effects are unbiased but 
may have large variances, especially if n is small. In general, the only 
responsible way to achieve greater precision is to increase n. Multi
collinearity cannot be responsible for slopes with implausible signs or 
magnitudes and cannot create spurious significance.

2. Equation (12.15), section 12.4: The sample estimate of σ 2 is
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3. Equation (12.16), section 12.4: The sample standard deviation 
of b1 is
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4. Section 12.5: Joint hypotheses specify values for two or more param
eters simultaneously.

5. Equation (12.23), section 12.5: A restricted regression adopts a null 
hypothesis regarding the value or values of one or more parameters. 
This null hypothesis may also be referred to as an assumption or, most 
commonly, a restriction. The sum of squared errors from a restricted 
regression is always at least as large as the sum of squared errors from 
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an unrestricted regression:
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 In particular, the sum of squared errors, and therefore R2, can never go 
down when another explanatory variable is added to the regression. 
However, the adjusted R2 can go down.

6. Equation (12.29), section 12.6: The test of j restrictions is
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7. Section 12.7: If we include an irrelevant variable in our regression, the 
slopes are still unbiased estimators of the true coefficient values. In par
ticular, the slope for the irrelevant variable should be pretty close to zero, 
at least statistically. However, the inclusion of an irrelevant variable will 
usually reduce the precision of the estimated effects of relevant variables.

8. Section 12.8: With two explanatory variables, ordinary least squares 
(OLS) slopes are still unbiased estimators if the disturbances are het
eroscedastic or autocorrelated. The White test, the White heterosce
dasticityconsistent variance estimator, and the NeweyWest  
autocorrelationconsistent variance estimator are all still valid, but 
need to be reformulated to incorporate the second explanatory vari
able. Weighted least squares (WLS) or generalized least squares 
(GLS) are still required to obtain best linear unbiased estimators.

9. Equation (12.47), section 12.8: When one explanatory variable is 
 endogenous, the other explanatory variable must be included in the  
instrumenting equation, along with the instrumental variable itself.
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10. Equations (12.50) and (12.51), section 12.8: If both explanatory 
variables are endogenous, we need at least two instrumental  
variables.

12.1 Introduction

We introduced regression with two explanatory variables in equation (11.12) 
of the previous chapter. All of our attention in the rest of that chapter was 
on the slopes in this regression. First, we talked about leftoutvariable  
error (LOVE). Then we minimized the sum of squared errors in order to 
express the slopes as functions of the sample data. We concluded by proving 
that these slopes are unbiased estimators of the corresponding population 
coefficients.

Most of this was declamatory rather than interpretive. That is, for the most 
part we derived results that more or less spoke for themselves, such as the 
proof of unbiasedness. However, we had an intense and illuminating inter
pretive interlude in section 11.4. There, we worked quite hard to develop the 
essential foundation for the ceteris paribus interpretation of regression that 
we introduced in chapter 1.

We won’t work as hard in this chapter, and we will mostly devote ourselves 
to additional interpretations. We begin by deriving the variances of the slopes 
from equation (11.12). These are the vehicles on which the rest of this chap
ter is based. We use them first to address the issue of multicollinearity. As in 
section 11.4, this is a deeper look into the mechanism of regression. We then 
turn to the issue of interpreting regression results, rather than the regression 
framework, in an extended discussion of statistical testing and a brief reca
pitulation of chapters 8, 9, and 10.

12.2 The Variances of b1 and b2

We all know what’s coming next. After we look at expectations, we look at 
variances. It’s routine. We begin with equation (11.78). As in the derivation of 
V(b) in chapter 5, it’s most convenient to convert the various summations into 
forms that look like the numerators in expressions for sample variances and 
covariances when what we’re looking for is also a variance. Accordingly, we 
apply equations (11.47), (11.48), and (11.49) to equation (11.78):
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